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Figure 1: Examples of annotated bodily behaviors.

ABSTRACT

Body language is an eye-catching social signal and its automatic
analysis can significantly advance artificial intelligence systems to
understand and actively participate in social interactions. While
computer vision has made impressive progress in low-level tasks
like head and body pose estimation, the detection of more subtle
behaviors such as gesturing, grooming, or fumbling is not well
explored. In this paper we present BBSI, the first set of annotations
of complex Bodily Behaviors embedded in continuous Social Inter-
actions in a group setting. Based on previous work in psychology,
we manually annotated 26 hours of spontaneous human behavior
in the MPIIGrouplnteraction dataset with 15 distinct body language
classes. We present comprehensive descriptive statistics on the re-
sulting dataset as well as results of annotation quality evaluations.
For automatic detection of these behaviors, we adapt the Pyramid
Dilated Attention Network (PDAN), a state-of-the-art approach for
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human action detection. We perform experiments using four vari-
ants of spatial-temporal features as input to PDAN: Two-Stream
Inflated 3D CNN, Temporal Segment Networks, Temporal Shift
Module and Swin Transformer. Results are promising and indicate
a great room for improvement in this difficult task. Representing a
key piece in the puzzle towards automatic understanding of social
behavior, BBSI is fully available to the research community.

CCS CONCEPTS

« Computing methodologies — Image and video acquisition;
Activity recognition and understanding; « Human-centered
computing — Collaborative and social computing; « Applied com-
puting — Psychology.

KEYWORDS

dataset, body pose, gesture, social signals, behavior detection

ACM Reference Format:

Michal Balazia, Philipp Miiller, Akos Levente Tanczos, August von Liecht-
enstein, and Francois Brémond. 2022. Bodily Behaviors in Social Interac-
tion: Novel Annotations and State-of-the-Art Evaluation. In Proceedings
of the 30th ACM International Conference on Multimedia (MM °22), Oc-
tober 10-14, 2022, Lisboa, Portugal. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3503161.3548363


https://orcid.org/0000-0001-7153-9984
https://orcid.org/0000-0001-7037-7100
https://orcid.org/0000-0002-4760-9599
https://orcid.org/0000-0002-8774-746X
https://orcid.org/0000-0003-2988-2142
https://doi.org/10.1145/3503161.3548363
https://doi.org/10.1145/3503161.3548363
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3503161.3548363&domain=pdf&date_stamp=2022-10-10

MM °22, October 10-14, 2022, Lisboa, Portugal

1 INTRODUCTION

Bodily movements and poses are a key aspect of human behavior
in social interaction [67] and are indicative of a large variety of
personal and interpersonal information [49]. For example, leaning
of the torso was found to be related to liking of the addressee [38],
and behaviors like fumbling, grooming or face touching are related
to the regulation of stress [5]. Furthermore, body language was
shown to have distinct effects both on its perceivers as well as on
its producers. Dominant, open bodily displays can be perceived as
attractive [66] and gesturing was shown to lighten the cognitive
load [25, 52] and improve memory [14]. As a result, machines that
are supposed to understand and participate in social interactions
need to be able to accurately sense and interpret body language.

Over recent decades, huge advances were made in human body-
and hand pose estimation [3, 9, 28, 47]. At the same time, a large
number of works investigated the prediction of high-level attributes
based on bodily behavior [1, 7, 42]. For example, body movements
were utilized for detection of emergent leadership [7] and recogni-
tion of emotions [42] or personality types [1]. These approaches
typically use generic feature sets extracted from pose estimates or
rely on CNN-based visual representations. While such approaches
have the advantage of being relatively task-agnostic, they run
the danger of missing subtle differences in behavior, such as be-
tween scratching and fumbling, that can only be exploited with
fine-grained annotation. They further suffer from subjective or am-
biguous annotation and from the lack of interpretability associated
with a psychologically-motivated mid-level representation of be-
havior [24, 48, 56, 65], which is especially important if a behavior
analysis is supposed to be accepted by practitioners like clinical or
organizational psychologists.

Despite the advantages of a mid-level representation of bodily
behavior in human interactions, automatic approaches for the de-
tection of such behaviors are scarce [6, 35]. The main reason for this
is the lack of suitable datasets for training and evaluation. The few
existing datasets either only cover a single behavior like touching
the face with the hands [6], or focus on single people only and are at
present not publicly available [35]. To overcome this limitation, we
present the first publicly available annotations of a comprehensive
set of body language classes embedded in continuous group con-
versations. Our choice of behavior classes is motivated by previous
work in psychology [65]. As a basis for annotation, we make use of
a naturalistic multi-view group interaction dataset [44, 45] which
will enable future research to study body language in the context of
high-level social phenomena such as leadership, rapport, or liking.

Our specific contributions are threefold: First, we introduce Bod-
ily Behaviors in Social Interaction (BBSI), a set of novel annota-
tions for 15 bodily behavior classes on the MPIIGroupInteraction
dataset [45]. BBSI comprises 2.87 million frames of annotated be-
havior classes from 26 hours of human behavior embedded in con-
tinuous group interactions. Second, we provide detailed descriptive
analyses on the collected annotations as well as the results of a
dedicated experiment quantifying annotator agreement. Third, we
evaluate several state-of-the-art action detection approaches on
BBSI, reaching 61.3% True Positive Rate with the Pyramid Dilated
Attention Network [15] and Swin Transformer [37] features.!

Data and code are available at https://git.opendfki.de/body_language/acm_mm22.
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2 RELATED WORK

Our work is related to the function of body language in social
interactions, to approaches for the recognition of actions and body
language, as well as to existing human body language datasets.

2.1 Body Language in Social Interaction

Body language has been actively researched by psychologists for
decades [25, 38, 66]. Early work by Mehrabian [38, 39] found that,
among other signals, backward leaning of the torso is indicative
of liking. Dominant and open nonverbal displays, as opposed to
folded arms and crossed legs, are perceived as attractive when meet-
ing with strangers [66]. In a meta-analysis, [26] found significant
correlations between perceived social verticality and for example
self-touching and gesturing. A further study by [10] indicated that
people believe power is expressed with nonverbal cues like open
posture (i.e. no arms crossed or legs crossed), more gesturing, and
less self-touching (both hands and face). Furthermore, leaning to-
wards the interlocutor was shown to be associated with rapport [58],
and crossed arms were shown to be associated with emotion expres-
sions [68]. Displacement behaviors such as grooming, face touching
or fumbling are related to anxiety and stress regulation [5, 40, 41].

As a consequence of these manifold connections of body lan-
guage with important personal and social attributes, body language
analysis has been a focus of automatic approaches attempting to
infer high-level attributes such as emotion [23, 42, 53], leadership
role [7, 43], or personality type [1, 54]. In contrast to the human
science studies discussed above, these automatic approaches com-
monly lack an explicit intermediate representation of functional
bodily behavior categories. Instead, they rely on a generic feature
representation encoding body postures and movements [7, 42, 43] or
on deep learning approaches [53, 54] without easily interpretable in-
ternal structure. While such representations can be effective in pre-
diction scenarios, they often lack interpretability and may miss sub-
tle but meaningful differences, e.g. between fumbling and scratch-
ing. In this work, we draw upon the ethological rating scheme of
functional body language categories described in [65] to derive a
set of bodily behaviors that are intuitively interpretable and allow
to train models for fine-grained behavior distinctions.

2.2 Recognition of Actions and Body Language

RGB-based human action recognition has often been addressed by
three main approaches. Two-stream 2D Convolutional Neural Net-
works [29, 60, 73] generally contain two 2D CNN branches taking
different input features extracted from the RGB videos for action
recognition. Recurrent Neural Networks (RNN) [17, 36, 72] usually
employ 2D CNNss as feature extractors for an LSTM model. 3D CNN-
based methods [20, 63, 64] extend 2D CNNs to 3D structures, to
simultaneously model the spatial and temporal context information
in videos that is crucial for action recognition.

Among the many available human action recognition methods
we choose the following three for our evaluations: A well-cited
two-stream 2D CNN architecture by Wang et al. [69] which divides
each video into three segments and processes each segment with a
two-stream network, fusing the individual classification scores by
an average pooling method to produce the video-level prediction.
A revolutionary method by Carreira and Zisserman [11] which
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Table 1: Datasets annotated with body language classes described in the literature. Behaviors indicates the number of annotated
body language classes, Participants the number of human individuals, Length the length of annotated behavior, Views the
number of synchronized camera views on each participant, Group Size the number of participants that were synchronously
annotated, Spontaneous whether behavior was shown spontaneously, and Public whether the dataset is publicly available. NTU

is in italic, as only a subset of its classes are body language.

Name ‘ Behaviors Participants Length Views Group Size Spontaneous Public
iMiGUE [35] 32 72 35h 1 1 v X
PAVIS Face-Touching [6] 1 64 22h 1 4 v v
EMILYA [21] 7 11 6h 1 1 X v
NTU RGB+D 60/120 [34, 57] 60/120 40/106  133h/266h  80/155 1-2 X 4
BBSI (ours) \ 15 78 26h 3 3-4 v v

introduces the two-stream Inflated 3D CNN inflating the convolu-
tional and pooling kernels of a 2D CNN with an additional temporal
dimension. And the best performance method tested by [35] on
body language recognition by Lin et al. [33] of a parameter-free
Temporal Shift Module, which shifts a part of the channels along
the temporal dimension to perform temporal interaction between
the features from adjacent frames. We also experiment with the
transformer method by Liu et al. [37] that was designed for natural
language processing but its application has been recently extended
to computer vision tasks [18, 31].

In contrast to action recognition, which typically considers freely
moving people [16, 30, 59], the much thinner work on body lan-
guage recognition addresses more constrained social interaction
scenarios. For example, Yang et al. [70] generate sequences of body
language predictions from estimated human poses and feed them
to an RNN for emotion interpretation and psychiatric symptom
prediction. Kratimenos et al. [32] extract a holistic 3D body shape,
including hands and face, from a single image and feed them also
to an RNN for sign language recognition. Singh et al. [61] use hand-
crafted features to analyze body language for estimating a person’s
emotions and state of mind. Santhoshkumar et al. [55] use Feedfor-
ward Deep CNNss for detecting emotions from full body motions.
We observe that the common denominator of body language anal-
ysis methods are the employment of a general action recognition
method and the lack of a benchmark body language dataset.

2.3 Human Body Language Datasets

In contrast to datasets with annotations of high-level attributes like
emotions [42, 53], leadership [7, 45], or personality [50], datasets
annotated with concrete classes of bodily behavior are sparse. Ta-
ble 1 summarizes four relevant datasets with manual body language
annotations. Research that extracted body language automatically
but did not provide human annotations is not included [19, 23, 53].

In EMILYA [21], actors were asked to express different emotions
while performing daily actions such as walking, sitting down, or
moving objects. Two datasets NTU RGB+D 60/120 [34, 57] contain
a large number of general action classes that also include a number
of body language classes. However, these datasets do not consist of
spontaneous human behavior. The two most relevant datasets for
our work are the PAVIS Face-Touching dataset [6] and iMiGUE [35].
PAVIS Face-Touching is similar to BBSI as it also consists of record-
ings of group discussions. In contrast to the 15 behavior classes
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annotated in BBSI, PAVIS Face-Touching only has binary annota-
tions of whether a participant touches her face or not. Furthermore
it only has a single frontal view on each participant. The recently
introduced iMiGUE dataset [35] consists of annotations of 32 behav-
iors classes of speakers at sports press conferences. Annotations are
only provided for a single person (i.e. no annotations of discussion
partners), and only a single view on the target person is provided.
At the time of submission, the iMiGUE videos are not publicly ac-
cessible due to privacy issues?. We hereby present the first publicly
available annotations of body language on a multi-view dataset of
three to four people engaged in spontaneous group discussions.

3 DATASET

BBSI builds upon the MPIIGrouplnteraction dataset [45]. This dataset
comprises of 22 three- to four-person group discussion on contro-
versial topics, each lasting for 20 minutes. In total, it consists of 78

participants and 26 hours of behavior recordings. Every interaction

was recorded by 8 frame-synchronized cameras as well as with 4

microphones. After the discussions, participants rated their per-
ceived leadership, competence, dominance and liking of all other

members, as well as their feelings of rapport towards each other.
In addition to rapport and emergent leadership prediction [43, 45],

the dataset was further annotated and used for eye contact detec-
tion [22, 46] and for next speaker prediction [8, 44]. This wealth

of already existing annotations makes the MPIIGroupInteraction

dataset a perfect choice for the collection of body language labels

as it will allow future research on the connections and the utility

of body language information with key group phenomena.

3.1 Body Language Annotation

We densely annotated the full MPIIGrouplInteraction dataset with
15 body language classes (see Figure 1 and Table 2). Our set of
behavior classes is based on the the Ethological Coding System for
Interviews (ECSI) [65]. This coding system includes many bodily
behaviors that were shown to be connected to different social phe-
nomena, as described in Section 2.1. We selected all ECSI behaviors
involving the limbs and torso and excluded behavior classes based
on facial behavior, gaze, and head pose as these are not the focus of
this work and highly accurate methods to analyze such behaviors

2 According to a note dating from September 2021 on the official github page of iMiGUE
(https://github.com/linuxsino/iMiGUE), the file containing the links to the videos used
in the dataset has been removed for privacy protection.
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Table 2: Behavior classes in the dataset, including descriptions, number of annotated frames, annotation instances, and annotator

agreement.
Behavior ‘ Description # Frames # Instances Agreement
Adjusting Clothing | Clothing is adjusted 23k 250 0.77
Fold Arms Arms are folded across the chest 251k 200 0.82
Fumble Twisting and fiddling finger movements 422k 1374 0.54
Gesture Variable hand and arm movements during speech 373k 2607 0.85
Groom Fingers are passed through the hair in a combing movement 17k 282 0.71
Hand-face Hand(s) in contact with the face 79k 535 0.79
Hand-mouth Hand(s) in contact with the mouth 55k 318 0.74
Lean Towards Leaning forward from the hips towards the interlocutor 5k 72 0.13
Leg Movement Repetitive movement of legs 14k 860 0.51
Legs Crossed Legs are crossed 1397k 77 0.87
Scratch Fingernails are used to scratch parts of the body 72k 519 0.61
Settle Adjusting movement into a more comfortable posture in the chair 40k 290 0.54
Shrug Shoulders are raised and dropped again 8k 192 0.57
Smearing Hands Smearing hands on clothing 21k 298 0.54
Stretching Stretching of body parts 4k 31 0.61

already exist [4, 62]. We also excluded the two classes Crouch and
Relax, as they were only very rarely annotated (Crouch: 411 frames,
Relax: 2k frames), rendering estimation of classification perfor-
mance meaningless. In addition to the bodily behaviors included in
ECSI, we scanned the MPIIGroupInteraction dataset for additional
behaviors that occur frequently and carry potential meaning in a
social situation. As a result, we included the five additional classes:
Adjusting Clothing, Leg Movement, Legs Crossed, Smearing Hands,
Stretching.

To achieve high-quality annotations while keeping costs man-
ageable, we designed the following annotation procedure. First, we
trained three annotators on the task by providing examples and
discussing edge cases jointly. In this way, we made sure that the an-
notators arrived at a common understanding of the body language
classes. Each of the 78 participants of the MPIIGroupInteraction
dataset was fully annotated by one of the annotators. Subsequently,
each of the resulting annotations was checked by another annotator
to further improve quality. This procedure of annotation followed
by checking proved to be much more economical than collecting
several separate annotations of the same video. We used a separate
experiment to quantify annotation quality (see Section 3.2).

3.2 Analysis of Annotations

3.2.1 Descriptive Statistics. In total, 2.87 million frames of body
language were annotated across all classes for the full 26 hours of
video. Each annotation instance is defined by a specific behavior
label and a start time and an end time between which the behavior
appears continuously on all frames. Table 2 shows that the annota-
tion across the 15 behavior classes has highly uneven number of
annotated frames and instances. The most frequently annotated
class, Legs Crossed was annotated for 1397k frames, while Stretching
was only annotated for 4k frames. As a complementary view on the
quantity of annotations, Legs Crossed has the highest number of
annotated frames, but only over 77 annotation instances, meaning
that participants remained for a crossed-leg position for extended
periods of time. On the other hand, Gesture is annotated on less
frames (373k), but consists of many more distinct instances (2607).
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Another important aspect of BBSI is its multi-label characteristic,
that is, several body language classes can occur simultaneously.
Figure 2 shows the co-occurrence patterns of body language classes.
Strong co-occurrences can be observed between the lower body
classes (Legs Crossed, Leg Movement) and upper-body behaviors.
Co-occurrences between upper-body behaviors do exist, but are
more sparse. As a result, BBSI creates a challenging multi-label
classification problem.

3.2.2  Annotation Quality. To obtain a numerical estimate of anno-
tation quality, we performed a dedicated experiment based on the
collected annotations. We sampled 800 4-second clips from the full
dataset that were classified into body language classes separately by
all three annotators. These samples were drawn randomly from the
whole dataset with the following constraints: First, we considered a
4-second window to be a sample of a body language class if either
the class is annotated for at least 2 seconds of this window, or if
the 4-second window completely encompasses the corresponding
annotation instance. Second, we drew 50 samples of each behavior
class. Estimated with the rate of class co-occurrences, the precise
number of instances for each class in the 800 samples may be larger
than 50. For comparability, we used the same metric as [35] which
computes the agreement of two annotators by dividing twice the
number of annotated behaviors for which they agree by the total
number of behaviors annotated by both.

Table 2 shows the resulting agreements for each class separately.
Very high agreements above 0.8 are reached for frequent classes
such as Legs Crossed, Gesture, or Fold Arms. All other classes are in
the range of 0.5 to 0.8 with the only exception of Lean Towards which
was proven very challenging to annotate with only 0.13 agreement.
Liu et al. [35] do not provide class-specific annotator agreement but
only a global measure in which frequent classes contribute more
than less frequent classes, i.e. micro average. To get an estimate how
our annotator agreement relates to the agreement of 0.81 reported
in [35], we weight our class-specific agreements by the frame-wise
label distribution on BBSI, reaching an agreement of 0.78. Note
however, that these numbers are not directly comparable due to
different behavior classes and annotation protocols.
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Figure 2: Co-occurrences of body language classes. Each row shows the percentage with which other classes are annotated at

the same time as the class designated on the y-axis.

4 METHOD

For detecting the behaviors in the long input videos, we propose
a baseline method based on the Pyramid Dilated Attention Net-
work [15] for action detection. The model is fed with features ex-
tracted by four types of action recognition architectures.

4.1 Feature Extraction Networks

We examine the following four established algorithms that are
designed for general action recognition tasks.

4.1.1  Two-Stream Inflated 3D CNN. Extent of a pre-training boost
depends on the ability of a model architecture to adapt to a given pre-
training dataset. As the 3D image classification backbone, the Two-
Stream Inflated 3D CNN (I3D) [11] uses the ImageNet-pretrained
Inception V1 with batch normalization. Filters and pooling kernels
of very deep 2D image classification CNNs are inflated into 3D to
learn spatio-temporal feature extractors from video.

4.1.2  Temporal Segment Networks. An obvious problem of the
two-stream CNNs is their inability to model long-range tempo-
ral structure due to their access to only a limited stack of frames.
Temporal Segment Networks (TSN) [69] operate on a sequence of
short video clips sparsely sampled from the entire video. Each clip
in this sequence will produce its own preliminary prediction of
the action classes. Prediction over the full video is then derived
from a consensus among the partial clip predictions. In the learning
process, the loss values of video-level predictions, other than those
of clip-level predictions which were used in two-stream CNNss, are
optimized by iteratively updating the model parameters.

4.1.3  Temporal Shift Module. Traditional 3D convolution uses a
3D convolution kernel to perform convolution operations between
adjacent multiple frames at the same time, which can extract the
spatio-temporal feature information in the video at the cost of an
increase in calculation. Temporal Shift Module (TSM) [33] uses a
simple data preprocessing method to convert the invisible temporal

information in a single frame into extractable spatial feature infor-
mation. Several consecutive frames are stacked to form the original
tensor and the channels are moved forward and backward in the
temporal dimension to perform a simple feature fusion between the
consecutive frames. The fusion makes an independent single frame
contain certain temporal information, and simple 2D convolution
can be used to achieve spatiotemporal feature extraction.

4.1.4  Swin Transformers. Adapting the network architectures in
natural language processing to the domain of computer vision suf-
fers from large variations in the scale of visual entities and the high
resolution of pixels in images compared to words in text. Build-
ing upon the Transformer designed for sequence modeling and
translation tasks, the Swin Transformer (Swin) [37] is a hierarchi-
cal Transformer whose representation is computed with Shifted
windows. The shifted windowing scheme brings greater efficiency
by limiting self-attention computation to non-overlapping local
windows while also allowing for cross-window connection.

4.2 Training Feature Extractors

As human body language ground truth contains temporally overlap-
ping labeled segments as well as unlabeled sections, we investigate
two training settings for the feature extraction networks: Single-
Label training and Multi-Label training. In Multi-Label training, a
label is assigned to a clip if it overlaps an annotated segment in at
least half of its duration. On BBSI, 25% of the samples have no label
assigned, 49% samples have one label and the remaining 26% on
an overlap have between two and five labels. For the Single-Label
setting, we selected the samples from the Multi-Label setting with
at least one label. Each sample was assigned precisely one label
and those originally with multiple labels are copied multiple times,
each time with a single and unique label. The loss function we used
was the cross entropy loss followed by the softmax activation func-
tion. For each sample, each feature extractor returns a confidence
score for each behavior class. Prior to the output layer, each feature
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extractor produces a 2048-dimensional feature vector that is used
as input to the behavior detection method.

4.3 Behavior Detection

Detection of behaviors from a long video is done by feeding the
extracted feature vectors into an action detection architecture.
The Pyramid Dilated Attention Network (PDAN) [15] uses a self-
attention mechanism to capture temporal relations. The layers that
make up the network are called Dilated Attention Layers (DAL). A
DAL takes each segment as a center segment and concatenates its
feature representation with the feature representation of segments
being D-far in both directions from the center segment, where D
is the dilation rate. At this point, it applies self-attention on the
extracted segment-feature representations. PDAN is based on a
pyramid of DALs with same kernel sizes and dilation rates that
exponentially increase their temporal receptive field. The output of
PDAN consists of a list of predicted behaviors with their beginnings
and endings tied to the segmentation cuts, and their confidences.

4.4 Implementation Details

The feature extraction methods operate on fixed inputs of length 16
frames and size 224x224 pixels. Consequently, we resize the videos
appropriately and cut the long dataset videos into 16-frame video
clips. These clips are assigned with the corresponding behavior
class label and treated as independent samples for training and
evaluation. This splitting of videos does not disconnect the flow of
the actions as the annotated behaviors are mostly non-transitional,
that is, the actions described by these behaviors do not change
people’s body poses from one to another. For instance, a 64-frame-
long behavior Hand-mouth can be split into four 16-frame-long
clips in which a person keeps touching their mouth. Advantages
are that the number of samples increases significantly and that the
fixed-length clips can be input to all methods with an equal FPS.

All action recognition models are pre-trained on ImageNet and
Kinetics-400 and the action detection model is used without any pre-
training. Fine-tuning on BBSI is performed on both levels, action
recognition and action detection. For comparability, all models were
trained for 15 epochs. Learning rates are set to: 13D 1072, TSN 1073,
TSM 7.5 - 10~%, Swin 10~3 with AdamW optimizer, and PDAN 1071,
Our implementation uses the open-source toolbox MMaction2 [13]
built on top of PyCharm.

5 EVALUATION

We provide evaluation results of our baseline method at two levels:
quality of the extracted features and quality of the final detection.
As feature extractors are trained as classifiers, they are evaluated
with standard classification metrics, and the final detector is evalu-
ated on standard detection metrics. In all experiments, we use the
training/validation split of MPIIGrouplnteraction reported in [44]:
training recordings 07, 10-25; validation recordings 08, 09, 26—-28.

5.1 Classification Evaluation

Table 3 shows classification performance of the feature extraction
networks, both for the Multi-Label as well as for the Single-Label
training setting. We also include the random classifier as a baseline.
Results are reported in terms of Mean Average Precision (MAP)

75

Michal Balazia et al.

Table 3: Five action recognition architectures, four proposed
methods and one random, in both labeling settings. Each
value is a MAP score computed using micro/macro averaging.

Method ‘ Single-Label ~ Multi-Label
random 0.258 /0.067 0.377 / 0.106
I3D [11] 0.445/0.212 0.624/0.284
TSN [69] | 0.520/0.232 0.661/ 0.308
TSM [33] | 0.508/0.228 0.721/0.313
Swin [37] | 0.601/0.305 0.745/0.374
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Figure 3: Confidence matrices of behavior recognition by the
Swin Transformer trained in both labeling settings.

using micro averaging (same weight for each sample) and macro
averaging (same weight for each class). The best result is achieved
by Swin Transformers in the multi-label training scenario, reaching
0.75 micro averaging MAP and 0.37 macro averaging MAP. The
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Table 4: Effects of exclusion of static classes and class bal-
ancing on behavior recognition by TSM [33]. Each value is a
MAP using micro/macro averaging.

static included balancing ‘ Single-Label ~ Multi-Label

v v 0.508 /0.228 0.721/0.319
v X 0.595/0.294 0.746 / 0.384
X 4 0.601/0.279 0.618/0.305
X X 0.658 /0.333  0.639/0.336

second best method in the Multi-Label setting was TSM with 0.72
and 0.31 micro- and macro averaging MAP. In the Single-Label
scenario, Swin Transformers also reached the best performance.
The second best method in this case is TSN. All feature extraction
networks clearly outperformed the random baseline.

Evaluation of all methods can be visualized by aggregating all
confidence vectors into a confidence matrix. Rows of this 15x15
square matrix are ground truth classes and columns are prediction
confidences. The matrix is constructed by adding all confidence
vectors into the corresponding ground truth rows and then dividing
each row by the number of its summands. In the ideal case, this
matrix would coincide with the co-occurrence matrix presented
in Figure 2. See Figure 3 for the confidence matrices of behavior
recognition by the Swin Transformer for both Single-Label and
Multi-Label training. Compared to Single-Label training, the Multi-
Label network is able to more accurately model class co-occurrences,
especially with Legs Crossed. We report further confidence matrices
in the supplementary material.

We performed additional ablation experiments with the TSM
model. First, as the behaviors Legs Crossed and Fold Arms make
forms of static positional body pose rather than dynamic motion ac-
tions, they can be recognized on a frame level and with an eventual
aid of a generally non-temporal skeleton estimation technique. We
evaluated the training and evaluation scenario with only 13 classes,
excluding these two static classes. And second, as the dataset has
considerably imbalanced class frequencies (ranging from 4k anno-
tated frames to more than a million, see Table 2), overrepresented
behaviors have a too high impact on training compared to under-
represented ones. Therefore, we evaluated the influence of class
balancing by randomly selecting 20k samples from each class to
counteract weight of overrepresented classes while keeping all sam-
ples of the underrepresented classes. Table 4 shows the effects of
static class exclusion and class balancing. We observe systematic
advantage of excluding static classes in the Single-Label setting and
of including static classes in the Multi-Label setting, and of no class
balancing overall.

5.2 Detection Evaluation

In addition to MAP, the evaluation metrics are calculated from the
detection confidence vector on the frame level: True Positives (TP)
as the sum of confidences in true classes, False Positives (FP) as the
sum of confidences in false classes, and False Negatives (FN) as the
sum of 1 minus confidences in true classes. From TP, TN and FN on
the frame level, we calculate the F1 score globally using both micro
and macro averaging. As expected from behavior recognition, Swin
achieves the best results with F1 0.728/0.544 and MAP 0.742/0.415
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TP: FoldArms, Fumble,
Leg Movement, Legs Crossed

TP: Lean Towards

FP: Adjusting Clothing, Settle

FP: Smearing Hands
FN: Adjusting Clothing

FP: Groom
FN: Scratch, Legs Crossed

Figure 4: Illustrative examples of true positive, false positive
and false negative predictions.

on the Single-Label setting, and F1 0.726/0.511 and MAP 0.691/0.367
on Multi-Label, using micro/macro averaging respectively. Figure 4
illustrates examples of true positive, false positive and false negative
predictions. As in behavior detection without class balancing, there
is a high inter-class performance variance. The most frequent class
Legs Crossed reaches the highest performance among all classes.

6 DISCUSSION

6.1 Annotations

We presented the first publicly available annotations of 15 body lan-
guage classes on a multi-view group discussion dataset. Annotating
human bodily behavior is challenging due to the subtle and often
subjective nature of body language. To evaluate the agreement of
our annotators, we conducted a dedicated experiment. Our class-
based analysis of annotator agreement revealed clear differences
between the agreement for different behavior classes, which should
be taken into account by potential users of the dataset. Restricting
to a subset of the annotated classes to those with a proper relevance
to the particular application and a high inter-annotator agreement
can be a good practice for any body language analysis system. On
the other hand, if body language annotations are used to train a
feature representation that is used in a downstream task, even low
agreement classes can still be useful. On the other hand, if body
language annotations are used to train a feature representation
that is used in a downstream task, even classes with low annotator
agreement can still be useful. We include classes with low agree-
ment scores for full transparency and leave it to the users to decide
which classes to use depending on their preferences. Supplemen-
tary material provides class-specific evaluation results to facilitate
comparison with researchers who choose a subset of classes.

6.2 Achieved Performance

In line with the recent trend on computer vision tasks [18, 31],
the effectiveness of transformers is also reflected on BBSIL. Even
the Tiny version of Swin Transformers has outperformed all other
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Table 5: Evaluation of PDAN [15] with four types of features trained in both labeling settings in terms of F1 and MAP using

micro/macro averaging.

Features Single-Label Multi-Label

F1 MAP F1 MAP
random 0.348/0.114 0.312/0.092 | 0.348/0.115 0.312/0.092
I3D [11] 0.542/0.340 0.502/0.276 | 0.581/0.339 0.557/0.271
TSN [69] | 0.550/0.309 0.624/0.291 | 0.531/0.343 0.658 / 0.311
TSM [33] | 0.660/0.419 0.600/0.311 | 0.627 / 0.347 0.626 / 0.293
Swin [37] | 0.729/0.545 0.742/0.415 | 0.726 / 0.511  0.691/ 0.367

CNN-based architectures in every setup where it was applied. This
is usually followed by TSM and TSN, although I3D has a higher
potential due to its 10-times larger number of parameters.

Class balancing degrades the performance in any setup. Al-
though it was introduced to counteract the dominance of static
classes, the MAP drop is the highest in those setups where the
static classes are included. Our assumption is that equally balanc-
ing the dataset is not adequate in this case as the distribution of
instance numbers per classes are exponential. Despite giving equal
weight to the classes of very few instances increases their perfor-
mance on the training set, they are not possible to achieve good
recognition on unseen data. Not only it does not improve testing
inference, the metrics of other classes fall as well.

Applying the Single-Label setting on a detection task inherently
produces incorrect predictions. As in most of the cases there is
at least one static class involved in concurrent actions, excluding
static classes results in a classification problem of a significantly
reduced rate of multiple labels. Thus, the difference between the
Single-Label and Multi-Label experiments when the static classes
are excluded is almost negligible compared to the case when all
the classes are included, which is in the range between 0.005-0.088
MAP if there is no class balancing applied.

6.3 Applications

The primary intended application for BBSI annotations is to train
and evaluate algorithms that predict body language classes. How-
ever, our annotations can also be useful in a pre-training step or for
auxiliary training of approaches that address high-level behavior
interpretation tasks such as leadership detection [7, 43] or person-
ality prediction [1, 50] for which only limited amount of training
data is available. Furthermore, it can be of interest for behavioral
scientists to use our annotations for research on the expression
of nonverbal behavior in group interactions and how it relates to
aspects like leadership, rapport, or interpersonal synchrony.

As BBSI is based on a rating scheme developed in the context
of psychiatric interactions [65], we expect our body language pre-
dictions to be highly useful in clinical tasks, e.g. for depression
detection [71] or to estimate the quality of the therapist-patient re-
lationship [27]. Using a set of psychologically motivated behaviors
as an intermediate representation instead of generic pose-based
features or deep learning representations will allow for better in-
terpretability and build trust with clinicians and patients alike. Our
presented prediction methods can also be integrated into existing
conversation analysis tools [51], which at present do not have the
ability to detect fine-grained body language.
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6.4 Limitations and Future Work

Our novel annotations and state-of-the-art evaluations represent
an important step towards automatic analysis of body language in
social interaction. At the same time, several challenges remain that
need to be addressed in future work. While the BBSI set of behavior
classes is motivated by previous work linking those classes to so-
cial attributes like leadership, rapport, or emotions, this link needs
to be solidified by investigating the predictive power of bodily
behaviors for such downstream tasks. Furthermore, as the MPI-
IGrouplnteraction dataset consists of participants recruited at a
German university, future work should collect comparable datasets
with more diverse cultural backgrounds. A key challenge on BBSI
is the large class imbalance that makes it difficult to train accu-
rate models for classes that occur seldomly in natural behavior.
Future work could investigate generation of synthesized training
examples or advanced data augmentation techniques. The detection
and classification approaches presented in this paper learn a single
model that is applied to all participants. While this is a meaningful
first step to approach the task, the expression of body language is
highly individual. Future work should investigate personalization
and test-time adaptation [2, 12] to model personal idiosyncrasies
adequately. Another possible improvement is to use multi-channel
inputs, e.g. by exploiting all three views on a person, or adding pose
information [9].

7 CONCLUSION

In this work, we presented BBSI, the first publicly available set of
annotations of subtle bodily behaviors in group interactions. The
novel annotations consist of 15 body language classes that were
densely annotated for 26 hours of human behavior recorded from 78
participants on the publicly available MPIIGroupInteraction dataset.
We provided results of descriptive analyses of the annotations as
well as a dedicated experiment on annotation quality, as they were
done manually by our human annotators. Furthermore, we pre-
sented the results of state-of-the-art action recognition approaches
evaluated on the MPIIGrouplInteraction dataset with the BBSI anno-
tations. As such, our work is a key contribution to advance in-depth
analyses of subtle body language cues in human interactions.
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